
A PACKET'S JOURNEY THROUGH PF
KRISTOF PROVOST

SHAMELESS SELF-PROMOTION

WHO AM I?

▸ Kristof Provost

▸ kp@FreeBSD.org

▸ pf (in FreeBSD) maintainer since 2015

▸ “Hmm, IPv6 fragmentation handling isn’t great. I bet I could
fix that!”

▸ And in pfSense since 2021

▸ Thanks, Netgate!

mailto:kp@FreeBSD.org

THE PREQUEL

INTRODUCTION

▸ Based on FreeBSD main as of today(-ish)

▸ See also “A Packet’s Journey Through the OpenBSD Network
Stack”

▸ Alexander Bluhm

▸ https://www.youtube.com/watch?v=Kn2XEW4Qre0

▸ https://2024.eurobsdcon.org/slides/eurobsdcon2024-
alexander_bluhm-a_packets_journey.pdf

https://www.youtube.com/watch?v=Kn2XEW4Qre0
https://2024.eurobsdcon.org/slides/eurobsdcon2024-alexander_bluhm-a_packets_journey.pdf
https://2024.eurobsdcon.org/slides/eurobsdcon2024-alexander_bluhm-a_packets_journey.pdf

CONTEXT

TL;DR: THE NETWORK STACK

CONTEXT

TL;DR: THE NETWORK STACK

WORDS, WHAT DO THEY MEAN?

KEY CONCEPTS

▸ States

▸ pf is a stateful firewall[*]

▸ Even for stateless protocols (I.e. UDP)

▸ Rules

▸ i.e. what policy are we apply to packets (or connections!)

▸ [*] Except when not. pf on layer 2 is stateless

PF OVERVIEW

30,000 FT OVERVIEW

▸ pf_test()

▸ pf_setup_pdesc()

▸ Parse packet

▸ Normalise packet

▸ i.e. reassembly

▸ pf_test_state_<protocol>()

▸ (TCP, UDP, SCTP, ICMP, Other)

▸ Find state

▸ Or pf_test_rule()

PF OVERVIEWER

30,001 FT OVERVIEW

▸ Output handling

▸ pass

▸ drop

▸ route-to

▸ af-to

▸ IPv6 special case

▸ Re-fragment

CHOICES HAVE CONSEQUENCES

IMPLICATIONS

▸ Test for state first

▸ Evaluate rules only if no state is found

▸ So if rules change, existing connections keep passing

▸ ‘block all’ may not be block everything immediately!

▸ Flush or kill states to actually terminate them

LOTS OF CONSEQUENCES

MORE IMPLICATIONS

▸ State lookup is performance critical

▸ How does this work?

▸ Hash table

▸ With linked list of states in each hash row

▸ net.pf.states_hashsize

▸ Key

▸ Src/dst IP

▸ Src/dst port (or ICMP type/code)

▸ Address Family

▸ Protocol

IT’S NICE WHEN IT DOES WHAT YOU TELL IT TO DO

CONTROL PLANE

▸ How the user configures pf and get information out of it

▸ Interface to userspace

▸ ioctl

▸ ioctl + nvlist

▸ netlink

▸ Hopefully the only option in the future

▸ Somewhat abstracted by libpfctl

▸ pfctl

THERE’S NO ESCAPING LOCKING

LOCKING

▸ Rules lock

▸ Read/write lock

▸ (Read-mostly), and therein lies yet another story

▸ State lock

▸ Per hash-row

▸ Another reason for net.pf.states_hashsize to be well
dimensioned

USED TO SUCK. SUCKS LESS NOW.

LOCKING PFSYNC

▸ Used to be locked with a single mutex

▸ pfsync locking is now per-bucket

▸ Buckets collect state updates for a number of states, based on
their ID hash

▸ Performance improvement from 30 to 100%

▸ Tuneable with

▸ net.pfsync.pfsync_buckets

▸ defaults to 2x ncpu

LOWERING OUR STANDARDS. OR LAYERS.

ETHERNET

▸ FreeBSD-unique feature

▸ (Very) basic filtering on Layer 2

▸ Mostly so we can look at MAC addresses for captive portal
scenarios

▸ Stateless

ether pass quick proto 0x0806
ether pass quick from 00:01:02:03:04:05
ether pass tag captive

WHAT TCP WANTS TO BE WHEN IT GROWS UP

SCTP

▸ Very TCP-like, but with multiplexed flows

▸ And multihoming

▸ Hence special case handling

▸ Parse SCTP header to find ASCONF chunks

▸ Set up states for all multi homed options

▸ Also unique to FreeBSD

▸ Not aware of another open-source firewall that handles SCTP multihoming

1, 2, 3, THAT OTHER ONE, FIVE

COUNTERS

▸ What do they mean?

▸ Where do they live in the code?

▸ Surprising performance implications

LOOK, COUNTERS!

COUNTERS (2/2)
State Table Total Rate
 current entries 0
 searches 301 150.5/s
 inserts 0 0.0/s
 removals 0 0.0/s
Counters
 match 301 150.5/s
 bad-offset 0 0.0/s
 fragment 0 0.0/s
 short 0 0.0/s
 normalize 0 0.0/s
 memory 0 0.0/s
 bad-timestamp 0 0.0/s
 congestion 0 0.0/s
 ip-option 0 0.0/s
 proto-cksum 0 0.0/s
 state-mismatch 0 0.0/s
 state-insert 0 0.0/s
 state-limit 0 0.0/s
 src-limit 0 0.0/s
 synproxy 0 0.0/s
 map-failed 0 0.0/s
 translate 0 0.0/s

I LIED LAST TIME. ONE MORE.

COUNTERS (3/3): RULE COUNTERS

block drop in log inet all
 [Evaluations: 871131 Packets: 127454 Bytes: 14161624 States: 0]
 [Inserted: uid 0 pid 0 State Creations: 0]

PROBING HARDER AND DEEPER

DTRACE: USEFUL PROBE POINTS

▸ pf:purge:state:rowcount

▸ Useful for monitoring hash table usage

▸ pf:ioctl:ioctl:error & pf:ioctl:function:error

▸ Useful to pinpoint ioctl failures

▸ pf:sctp:multihome:{test, add, remove}

▸ For SCTP multihome monitoring

▸ pf:{ip,ip6}:route_to:{entry, drop, output}

▸ route-to/reply-to/dup-to debugging

QUESTIONS?

